学术交流
学术交流
首页  >  学术科研  >  学术交流  >  正文

    【学术讲座】Martingale Solutions of Fractional Stochastic Equations Driven by Superlinear Noise

    2025-06-07  点击:[]

    题目:Martingale Solutions of Fractional Stochastic Equations Driven by Superlinear Noise

    报告人:王碧祥, New Mexico Institute of Mining and Technology, 教授

    时间:6月13日(周五)上午10: 00-11: 00

    地点:X30456

    摘要:In this talk, we first prove the existence of martingale solutions of an abstract stochastic equation with a monotone drift and a superlinear diffusion term. Both the nonlinear drift and diffusion terms are continuous but not necessarily locally Lipschitz continuous. We then apply the abstract result to establish the existence of martingale solutions of the fractional stochastic reaction-diffusion equation with a polynomial drift of any order driven by a superlinear noise. The pseudo-monotonicity techniques and the Skorokhod-Jakubowski representation theorem in a topological space are used to pass to the limit of a sequence of approximate solutions defined by the Galerkin method.

    个人简介:王碧祥,美国新墨西哥矿业理工大学数学系终身教授,主要从事无穷维动力系统和非线性偏微分方程理论与应用等领域的研究。目前已发表SCI 论文150余篇,研究主要成果发表于《Mathematische Annalen》,《Transactions of the American Mathematical Society》,《Journal of Functional Analysis》,《SIAM Journal on Applied Dynamical Systems》,《Proceedings of the American Mathematical Society》,《Journal of Differential Equations》,《Science China Mathematics》,《Stochastic Processes and their Applications 》,《Nonlinearity》,《Physica D: Nonlinear Phenomena》,《Journal of Dynamics and Differential Equations》等多个国际知名数学学术期刊上。

    下一条:【学术讲座】Sonic-supersonic solutions for the 3D steady full ultra-relativistic Euler equations with axial-symmetry

    关闭