报告人: 李扬荣 西南大学 教授
报告时间: 04月11日(周五)下午 03: 30-04: 20
报告地点:X30456
摘要:In this talk, we focus on the continuity-set of pullback random attractors from a parametric space into the space of all compact subsets of the state space with Hausdorff metric. We find a general theorem that the continuity set is an IOD-type ( countable Intersection of Open Dense sets) with the local similarity and we further show that any IOD-type set in the parametric space has the continuous cardinality, which affirmatively answers the unsolved question about the cardinality of the continuity set of attractors in the literature. Applying to the random nonautonomous nonlocal parabolic equations on an unbounded domain driven by colored noise, we establish the existence and IOD-type continuity of pullback random attractors in time, sample-translation and noise-size. This is a joint work with T. Caraballo and F. Wang.
个人简介:李扬荣,西南大学数学与统计学院教授,博导。96年博士毕业于南京大学,05年于北京应用物理与计算数学研究所作博士后。现任中国数学会常务理事,重庆数学会副理事长。主要研究随机或确定的无穷维动力系统,在Math ann, Siam NUM, J Diff Equ, Physica D, Siam JADS,等期刊上发表论文100余篇。先后主持国家自然科学基金面上项目3项,参研教育部重点项目一项。曾获重庆市自然科学二等奖, 三等奖及重庆市优教成果二等奖各一次。
主办:西南交通大学数学学院
西南交通大学数学中心