Southwest Jiaotong University School of Mathematics

信息与计算科学系

首页  >  学术科研  >  信息与计算科学系  >  正文

西南交通大学数学学院系列学术讲座:Low-Rank and Sparse Enhanced Tucker Decomposition for Tensor Completion

来源:   作者:     日期:2021-11-15 15:43:32   点击数:  

人:凌晨

讲座时间:2021111915:00-16:00

讲座地点:腾讯会议(会议号: 765 799 129; 密码: 1119

讲座题目:Low-Rank and Sparse Enhanced Tucker Decomposition for Tensor Completion


讲座内容:Tensor completion refers to the task of estimating the missing data from an incomplete measurement or observation, which is a core problem frequently arising from the areas of big data analysis, computer vision, and network engineering. Due to the multidimensional nature of high-order tensors, the matrix approaches, e.g., matrix factorization and direct matricization of tensors, are often not ideal for tensor completion and recovery. Exploiting the potential periodicity and inherent correlation properties appeared in real-world tensor data, in this talk, we shall incorporate the low-rank and sparse regularization technique to enhance Tucker decomposition for tensor completion. A series of computational experiments on real-world datasets, including internet traffic data, color images, and face recognition, show that our model performs better than many existing state-of-the-art matricization and tensorization approaches in terms of achieving higher recovery accuracy.

主讲人简介:凌晨,杭州电子科技大学理学院教授,博士生导师。现任:中国运筹学会数学规划分会副理事长、中国经济数学与管理数学研究会副理事长、国际ESI期刊 Pacific Journal of Optimization编委、国际期刊Statistics, Optimization & Information Computing编委,曾任:杭州电子科技大学理学院院长、中国运筹学会理事、中国系统工程学会理事、浙江省数学会常务理事。研究方向:非线性规划、变分不等式与互补问题、张量计算、多变量多项式优化、半无限规划、随机规划、多目标优化理论与应用等。近十年来,主持国家自科基金和浙江省自科基金各4项、其中省基金重点项目1项。在国内外重要刊物发表论文80余篇,其中SCI期刊论文60余篇,多篇发表在Math. Program.SIAM J. on Optim. SIAM J.on Matrix Anal.and Appl. COAPJOTAJOGO等。

主办:西南交通大学数学学院信息与计算科学系