题目:Frobenius-Perron theory of representation-directed algebras
摘要:The spectral radius (also called the Frobenius-Perron dimension) of a matrix is an elementary and extremely useful invariant in linear algebra, combinatorics, topology, probability and statistics. The Frobenius-Perron dimension of an endofunctor of a triangulated category is a useful invariant in several different topics such as embedding problem, Tame and wild dichotomy, complexity of categories. In this talk, I will introduce the Frobenius-Perron dimension of of an endofunctor of a k-linear category, calculate the Frobenius-Perron dimension of representation directed algebras and quotient algebras of canonical algebras of type ADE. The talk is based on joint works with Jiayi Chen.
时间:2021年5月11日(星期二)上午十点
地点:X9501
报告人简介:陈健敏,厦门大学数学科学学院教授,对于有限维代数上的模范畴及导出范畴、加权射影曲线(面)上的(拟)凝聚层范畴、斜群代数、群作用及等变范畴、倾斜理论、Frobenius-Perron理论等有比较深入的研究,主持国家自然科学基金面上项目两项。