Southwest Jiaotong University School of Mathematics


首页  >  学术科研  >  数学系  >  正文


来源:数学系   作者:黎定仕     日期:2019-06-28 09:44:22   点击数:  

题目:Steric effects on ionic flows via Poisson-Nernst-Planck systems

时间: 529号(周六)下午4:30-5:30


摘要:In this work, we analyze a quasi-one-dimensional steady-state Poisson– Nernst–Planck-type model for ionic flow through a membrane channel with fixed boundary ion concentrations (charges) and electric potentials. We consider two ion species, one positively charged and one negatively charged, and assume zero permanent charge. A local hard-sphere potential that depends pointwise on ion concentrations is included in the model to account for ion size effects on the ionic flow. The existence of solutions to the boundary value problem for small ion sizes is established. Treating the ion sizes as small parameters, we also derive approximations of both individual fluxes and the I-V (current-voltage) relation and identify some critical potentials or voltages for ion size effects. Under electroneutrality boundary conditions, each of these critical potentials separates the potential into two regions over which the ion size effects are qualitatively opposite to each other. Important scaling laws of I-V relations and critical potentials in boundary concentrations are obtained. 

个人简介:Mingji Zhang (张明吉),副教授, 博士生导师,目前就职于美国新墨西哥矿业理工学院。2013年毕业于美国堪萨斯大学,获理学博士学位; 2013-2015年跟随著名数学家 Peter W. Bates 在密歇根州立大学做博士后研究。研究方向为非线性动力系统,微分方程及其应用,特别是在离子通道问题 (Ion Channel Problem)和发展生物学(developmental biology)中的应用。研究的主要工具是在非线性动力系统不变流形理论上发展起来的几何奇异摄动理论。 在研究 离子通道问题中,特别是对离子流的动力学行为的研究,做出了重要贡献,得到同行专家学者的高度认可。已在 《J. Differential Equations》,《J. Dynamics and Differential Equations, SIAM J. Applied Mathematics, SIAM J. Applied  Dynamical  Systems》,《Advances in Computational Mathematics,Communications in Mathematical Sciences》,《Discrete and Continuous Dynamical Systems-A》等国际著名期刊发表论文近30篇。美国《数学评论》评论员,SIAM J. Applied Mathematics, Discrete and Continuous Dynamical System-A, Int.  J. System Science 等近20 SCI杂志特邀审稿人。