Southwest Jiaotong University School of Mathematics

学术交流

首页  >  学术科研  >  学术交流  >  正文

学术报告:Short-term load forecasting based on multivariate adaptive step FOA optimized GRNN

来源:   作者:数学     日期:2018-05-02 11:00:37   点击数:  

题目:Short-term load forecasting based on multivariate adaptive step FOA optimized GRNN

时间:5月5号(星期六)下午 3:00-4:00

地点:X2511

摘要:Short-term load forecasting plays a significant role in power system. In this paper, we propose multivariate adaptive step fruit fly optimization algorithm (MAFOA) to optimize the smoothing parameter of generalized regression neural network (GRNN) in short-term power load forecasting. In addition, due to the great impact of some external factors including temperature, weather types and date types on short-term power load, we take these factors into account. Moreover, we propose an efficient interval partition technique to handle with the structured and unstructured data. The empirical results demonstrate that convergence speed and forecasting accuracy of the proposed model are superior to BP neural network, GRNN and fruit fly algorithm optimized GRNN.

作者简介: 蒋锋,博士,教授,文澜学者。中南财经政法大学统计与数学学院数理与金融统计系主任,应用统计专业硕士大数据导师组组长。澳大利亚Monash University访问学者。

主持国家自然科学基金面上项目一项;主持湖北省科研项目2项;主持完成国家自然科学基金青年项目一项;主持完成湖北省自然科学基金一项,主持完成中央高校科研基金项目两项,主持完成中国博士后基金项目一项;曾获湖北省优秀博士学位论文奖;曾参与国家杰出青年基金项目、省杰出青年科学基金项目和多项国家自然科学基金面上项目。担任国际期刊“Neural Comput Appl”、“IEEE Trans Neural Netw Learn Syst”、“Comput Appl Math.”等和国际会议的评审人,担任国际学术会议“ICACI2018”、“ICICIP2016”等的PC Member。目前出版学术专著一部,已经发表SCI或EI论文50余篇,其中30多篇论文被SCI收录。现为TCCT随机控制分委员会委员(SCSSC)和美国数学评论评论员。